Equations of Motion Worksheet

Q1.

A car starts from rest and accelerates uniformly for 8.0 s. It reaches a final speed of 16 m s⁻¹.

- **a** What is the acceleration of the car?
- **b** What is the average velocity of the car?
- **c** Calculate the distance travelled by the car.

Q2.

A new model BMW can start from rest and travel 400 m in 16 s.

- **a** What is its average acceleration during this time?
- **b** Calculate the final speed of the car.
- c How fast is this final speed in km h^{-1} ?

Q3.

A space-rocket is launched and accelerates uniformly from rest to 160 m s⁻¹ in 4.5 s.

- **a** Calculate the acceleration of the rocket.
- **b** How far does the rocket travel in this time?
- **c** What is the final speed of the rocket in km h^{-1} ?

Q4.

A diver plunges head first into a diving pool while travelling at 28.2 m s⁻¹. Upon entering the water, the diver stops within a distance of 4.00 m from the diving board. Consider the diver to be a single point located at her centre of mass and assume her acceleration through the water to be uniform.

- **a** Calculate the average acceleration of the diver as she travels through the water.
- **b** How long does the diver take to come to a stop?
- **c** What is the speed of the diver after she has dived for 2.00 m.

Q5.

When does a car have the greatest ability to accelerate and gain speed: when it is moving slowly or when it is travelling fast? Explain.

06

A stone is dropped vertically into a lake. Which one of the following statements best describes the motion of the stone at the instant it enters the water?

- **A** Its velocity and acceleration are both downwards.
- **B** It has an upwards velocity and a downwards acceleration.
- C Its velocity and acceleration are both upwards.
- **D** It has a downwards velocity and an upwards acceleration.

Q7.

A cyclist, whilst overtaking another bike, increases his speed uniformly from $4.2~m~s^{-1}$ to $6.3~m~s^{-1}$ over a time interval of 5.3~s.

- a Calculate the acceleration of the cyclist during this time.
- **b** How far does the cyclist travel whilst overtaking?
- **c** What is the average speed of the cyclist during this time?

- **Q8.** A car is travelling along a straight road at 75 km h^{-1} . In an attempt to avoid an accident, the motorist has to brake to a sudden stop.
- a What is the car's initial speed in $m s^{-1}$?
- **b** If the reaction time of the motorist is 0.25 s, what distance does the car travel while the driver is reacting to apply the brakes?
- c Once the brakes are applied, the car has an acceleration of -6.0 m s⁻². How far does the car travel while pulling up?
- **d** What total distance does the car travel from when the driver notices the danger to when the car comes to a stop?

Q9.

A billiard ball rolls from rest down a smooth ramp that is 8.0 m long. The acceleration of the ball is constant at 2.0 m s⁻².

- **a** What is the speed of the ball when it is halfway down the ramp?
- **b** What is the final speed of the ball?
- **c** How long does the ball take to roll the first 4.0 m?
- **d** How long does the ball take to travel the final 4.0 m?

Q10.

A cyclist is travelling at a constant speed of 12 m s^{-1} when he passes a stationary bus. The bus starts moving just as the cyclist passes, and accelerates at 1.5 m s^{-2} .

- a When does the bus reach the same speed as the cyclist?
- **b** How long does the bus take to catch the cyclist?
- **c** What distance has the cyclist travelled before the bus catches up?